If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x-11=0
a = 1; b = -18; c = -11;
Δ = b2-4ac
Δ = -182-4·1·(-11)
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{23}}{2*1}=\frac{18-4\sqrt{23}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{23}}{2*1}=\frac{18+4\sqrt{23}}{2} $
| 2x-8(-1)=22 | | 6-t/4=8+1/2 | | X^2+x=-0.66 | | 4.8(2-3x)=1.2= | | 23+b=47 | | 17+-6k=-25 | | 6x-5+3x=5x+3 | | -9.8x=-24.46 | | -15b=31/3 | | 5x-12+7=-3(-1x5) | | 4x-5(-2x+5)=-5 | | (x+8)(3x-5)=3x^2-40+24x | | 15b=31/3 | | 11=u/5-17 | | -4+x/4=4 | | 6/7(k+7/9)=(3+1/3) | | 3*4^x/2=96 | | 3x21=180 | | 23=m-2 | | +19+18=64x | | 6/7(k+7/9)=3+1/3 | | 7(-9+x)=56 | | Z^2+10z=0 | | 6−0.9=t | | 8-7x-7x=-6 | | x+(x+3)+(x+5)=75 | | 4x+5+7x=5 | | 8x-6=6x-40 | | 60xx=180 | | x+(x+3)+(x+5)=81 | | 3c-15=17=-c | | 57-12+15q=85 |